Neoliberalism and local consistency

Tomáš Nagy
Jagiellonian University
joint work with Michael Pinsker

AAA 105, Prague, 1st June 2024
Views and opinions expressed do not reflect necessarily those of the author or of any other human being, dead or alive - in particular not of the co-author.

No individual or organisation can be held responsible for them.

Infinite structures

\mathbb{B} homogeneous if every orbit under $\operatorname{Aut}(\mathbb{B})$ determined by relations
Example: $(\mathbb{Q} ;<,=): O=\left\{(a, b, c, d) \in \mathbb{Q}^{4} \mid a<d, d<b, b=c\right\}$

Infinite structures

\mathbb{B} homogeneous if every orbit under $\operatorname{Aut}(\mathbb{B})$ determined by relations
Example: $(\mathbb{Q} ;<,=): O=\left\{(a, b, c, d) \in \mathbb{Q}^{4} \mid a<d, d<b, b=c\right\}$
\mathbb{B} finitely bounded if every description works unless one of finitely many conditions (bounds) is satisfied

Infinite structures

\mathbb{B} homogeneous if every orbit under $\operatorname{Aut}(\mathbb{B})$ determined by relations
Example: $(\mathbb{Q} ;<,=): O=\left\{(a, b, c, d) \in \mathbb{Q}^{4} \mid a<d, d<b, b=c\right\}$
\mathbb{B} finitely bounded if every description works unless one of finitely many conditions (bounds) is satisfied "No surprises in the eternity." \Rightarrow seems to be what we desire

Infinite structures

\mathbb{B} homogeneous if every orbit under $\operatorname{Aut}(\mathbb{B})$ determined by relations
Example: $(\mathbb{Q} ;<,=): O=\left\{(a, b, c, d) \in \mathbb{Q}^{4} \mid a<d, d<b, b=c\right\}$
\mathbb{B} finitely bounded if every description works unless one of finitely many conditions (bounds) is satisfied "No surprises in the eternity." \Rightarrow seems to be what we desire
Example: ($\mathbb{Q} ;<$): < irreflexive (forbids $x<x$), transitive (forbids $x<y<z$ without relations between x, z or with $x=z$), total (forbids x, y without relations)

Infinite structures

\mathbb{B} homogeneous if every orbit under $\operatorname{Aut}(\mathbb{B})$ determined by relations
Example: $(\mathbb{Q} ;<,=): O=\left\{(a, b, c, d) \in \mathbb{Q}^{4} \mid a<d, d<b, b=c\right\}$
\mathbb{B} finitely bounded if every description works unless one of finitely many conditions (bounds) is satisfied "No surprises in the eternity." \Rightarrow seems to be what we desire
Example: ($\mathbb{Q} ;<$): < irreflexive (forbids $x<x$), transitive (forbids $x<y<z$ without relations between x, z or with $x=z$), total (forbids x, y without relations)
\mathbb{B} has finite duality if every incomplete description gives union of orbits unless one of finitely many conditions (homomorphic bounds) satisfied

Infinite structures

\mathbb{B} homogeneous if every orbit under $\operatorname{Aut}(\mathbb{B})$ determined by relations
Example: $(\mathbb{Q} ;<,=): O=\left\{(a, b, c, d) \in \mathbb{Q}^{4} \mid a<d, d<b, b=c\right\}$
\mathbb{B} finitely bounded if every description works unless one of finitely many conditions (bounds) is satisfied "No surprises in the eternity." \Rightarrow seems to be what we desire
Example: ($\mathbb{Q} ;<$): < irreflexive (forbids $x<x$), transitive (forbids $x<y<z$ without relations between x, z or with $x=z$), total (forbids x, y without relations)
\mathbb{B} has finite duality if every incomplete description gives union of orbits unless one of finitely many conditions (homomorphic bounds) satisfied
"No surprises in the eternity even without full self-knowledge."
\Rightarrow what we actually desire

Infinite structures

\mathbb{B} homogeneous if every orbit under $\operatorname{Aut}(\mathbb{B})$ determined by relations
Example: $(\mathbb{Q} ;<,=): O=\left\{(a, b, c, d) \in \mathbb{Q}^{4} \mid a<d, d<b, b=c\right\}$
\mathbb{B} finitely bounded if every description works unless one of finitely many conditions (bounds) is satisfied "No surprises in the eternity." \Rightarrow seems to be what we desire
Example: ($\mathbb{Q} ;<$): < irreflexive (forbids $x<x$), transitive (forbids $x<y<z$ without relations between x, z or with $x=z$), total (forbids x, y without relations)
\mathbb{B} has finite duality if every incomplete description gives union of orbits unless one of finitely many conditions (homomorphic bounds) satisfied
"No surprises in the eternity even without full self-knowledge."
\Rightarrow what we actually desire
Example: $(\mathbb{Q} ;<)$ does NOT have finite duality: all cycles forbidden $x_{1}<x_{2}<\cdots<x_{n}<x_{1}$.
the universal homogeneous triangle-free graph has finite duality

Infinite-domain CSPs

\mathbb{B} - finitely bounded, homogeneous
\mathbb{A} - first-order definable in \mathbb{B}
$\operatorname{CSP}(\mathbb{A})$:
Input: $\Phi=\phi_{1} \wedge \ldots \wedge \phi_{k}$ - conjunction of atomic formulas
over the signature of \mathbb{A}
Question: Φ satisfiable?

Infinite-domain CSPs

\mathbb{B} - finitely bounded, homogeneous
\mathbb{A} - first-order definable in \mathbb{B}
$\underline{\operatorname{CSP}(\mathbb{A}):}$
Input: $\Phi=\phi_{1} \wedge \ldots \wedge \phi_{k}$ - conjunction of atomic formulas
over the signature of \mathbb{A}
Question: Φ satisfiable?
Finite formulation:
$\operatorname{maxarity}(\mathbb{B})=k, \tau-\operatorname{signature}$ of \mathbb{B}

Given:

- "values": O_{1}, \ldots, O_{m} - k-orbits under $\operatorname{Aut}(\mathbb{B})$,
- "constraints": constraints given by Φ (quantifier-free τ-formulas) + $\left\{F_{1}, \ldots, F_{n}\right\}$ - finite forbidden τ-structures (bounds)

Want: assign to every k-tuple of free variables of Φ an orbit O_{i} s.t. no F_{i} embeds to the resulting structure and s.t. Φ is satisfied

Liberalism vs neoliberalism, 1/2

\mathbb{B} is liberal if its relations correspond to orbits of pairs and it does not have bounds of size $3-6$ "If you are not free, you at least do not notice it."

Liberalism vs neoliberalism, 1/2

\mathbb{B} is liberal if its relations correspond to orbits of pairs and it does not have bounds of size $3-6$ "If you are not free, you at least do not notice it."
$k \geq 2, \mathbb{B}$ is k-neoliberal if

- it is homogeneous and its relations correspond to orbits of k-tuples, and
- \sim every orbit determined by k-ary relations
- clear and concise regulations

Liberalism vs neoliberalism, 1/2

\mathbb{B} is liberal if its relations correspond to orbits of pairs and it does not have bounds of size $3-6$ "If you are not free, you at least do not notice it."
$k \geq 2, \mathbb{B}$ is k-neoliberal if

- it is homogeneous and its relations correspond to orbits of k-tuples, and
- \sim every orbit determined by k-ary relations
- clear and concise regulations
- it has only one orbit of injective ($k-1$)-tuples, and
- free market - money can be transported between orbits by automorphisms without restrictions
\mathbb{B} is liberal if its relations correspond to orbits of pairs and it does not have bounds of size $3-6$ "If you are not free, you at least do not notice it."
$k \geq 2, \mathbb{B}$ is k-neoliberal if
- it is homogeneous and its relations correspond to orbits of k-tuples, and
- \sim every orbit determined by k-ary relations
- clear and concise regulations
- it has only one orbit of injective ($k-1$)-tuples, and
- free market - money can be transported between orbits by automorphisms without restrictions
- for any injective orbit O of k-tuples, any injective $(k-1)$-tuple can be extended to a tuple in O in at least two ways
- it is easy to divert money and avoid taxes
\mathbb{B} is liberal if its relations correspond to orbits of pairs and it does not have bounds of size $3-6$ "If you are not free, you at least do not notice it."
$k \geq 2, \mathbb{B}$ is k-neoliberal if
- it is homogeneous and its relations correspond to orbits of k-tuples, and
- \sim every orbit determined by k-ary relations
- clear and concise regulations
- it has only one orbit of injective ($k-1$)-tuples, and
- free market - money can be transported between orbits by automorphisms without restrictions
- for any injective orbit O of k-tuples, any injective $(k-1)$-tuple can be extended to a tuple in O in at least two ways
- it is easy to divert money and avoid taxes
liberal $\Rightarrow 2$-neoliberal

Examples:

- $(\mathbb{Q} ;<,=)$ is 2-neoliberal but not liberal
- orbits determined by $<,=$,
- any $a \in \mathbb{Q}$ can be moved by an automorphism to any other $b \in \mathbb{Q}$ \Rightarrow one orbit of elements,
- for any $a \in \mathbb{Q}$, there exist $b \neq c \in \mathbb{Q}$ with $a<b, a<c$,
- transitivity enforced by a bound of size $3 \Rightarrow$ not liberal.

Liberalism vs neoliberalism, 2/2

Examples:

- $(\mathbb{Q} ;<,=)$ is 2-neoliberal but not liberal
- orbits determined by $<,=$,
- any $a \in \mathbb{Q}$ can be moved by an automorphism to any other $b \in \mathbb{Q}$ \Rightarrow one orbit of elements,
- for any $a \in \mathbb{Q}$, there exist $b \neq c \in \mathbb{Q}$ with $a<b, a<c$,
- transitivity enforced by a bound of size $3 \Rightarrow$ not liberal.
- graph \mathbb{G} consisting of infinitely many isolated edges is NOT 2-neoliberal
- for any $a \in G$, there is a unique b connected by an edge to a
- \Rightarrow impossible to divert money
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$
How to solve $\operatorname{CSP}(\mathbb{A})$?
Local consistency: Derive information locally, constraints have to agree on small subsets of variables

Local consistency, 1/4

$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$
How to solve $\operatorname{CSP}(\mathbb{A})$?
Local consistency: Derive information locally, constraints have to agree on small subsets of variables
"Example": Computing the transitive closure of a binary relation R.
$\phi_{i}: R(x, y), \phi_{j}: R(y, z) \Rightarrow \operatorname{add} \phi:=R(x, z)$ to Φ
\sim looking on triples, deriving information about pairs of variables

Local consistency, 1/4

$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$
How to solve $\operatorname{CSP}(\mathbb{A})$?
Local consistency: Derive information locally, constraints have to agree on small subsets of variables
"Example": Computing the transitive closure of a binary relation R.
$\phi_{i}: R(x, y), \phi_{j}: R(y, z) \Rightarrow \operatorname{add} \phi:=R(x, z)$ to Φ
\sim looking on triples, deriving information about pairs of variables
$R^{\mathbb{A}}$ irreflexive, transitive and we derive $R(x, x) \Rightarrow \Phi$ not satisfiable.
\Rightarrow sometimes, local consistency solves $\operatorname{CSP}(\mathbb{A})$

Local consistency, 2/4

$1 \leq m \leq n$
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$, variable set \mathcal{V}
scope S of ϕ_{i} : all variables of ϕ_{i}
projection of ϕ_{i} to $X \subseteq S: \exists x_{1} \ldots x_{\ell} \phi_{i}$, where $S \backslash X=\left\{x_{1}, \ldots, \ldots x_{\ell}\right\}$

Local consistency, 2/4

$1 \leq m \leq n$
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$, variable set \mathcal{V}
scope S of ϕ_{i} : all variables of ϕ_{i}
projection of ϕ_{i} to $X \subseteq S: \exists x_{1} \ldots x_{\ell} \phi_{i}$, where $S \backslash X=\left\{x_{1}, \ldots, \ldots x_{\ell}\right\}$
$\Phi(m, n)$-minimal if

- for every set of $\leq n$ variables from \mathcal{V}, some ϕ_{i} contains all these variables in its scope, and
- for every set V of $\leq m$ variables from \mathcal{V} and for all ϕ_{i}, ϕ_{j} containing all variables from V in their scopes, the projections to V agree.

Local consistency, 2/4

$1 \leq m \leq n$
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$, variable set \mathcal{V}
scope S of ϕ_{i} : all variables of ϕ_{i}
projection of ϕ_{i} to $X \subseteq S: \exists x_{1} \ldots x_{\ell} \phi_{i}$, where $S \backslash X=\left\{x_{1}, \ldots, \ldots x_{\ell}\right\}$
$\Phi(m, n)$-minimal if

- for every set of $\leq n$ variables from \mathcal{V}, some ϕ_{i} contains all these variables in its scope, and
- for every set V of $\leq m$ variables from \mathcal{V} and for all ϕ_{i}, ϕ_{j} containing all variables from V in their scopes, the projections to V agree.
\sim possible to compute an (m, n)-minimal "instance" from Φ effectively, we do not lose solutions

Local consistency, 2/4

$1 \leq m \leq n$
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$, variable set \mathcal{V}
scope S of ϕ_{i} : all variables of ϕ_{i}
projection of ϕ_{i} to $X \subseteq S: \exists x_{1} \ldots x_{\ell} \phi_{i}$, where $S \backslash X=\left\{x_{1}, \ldots, \ldots x_{\ell}\right\}$
$\Phi(m, n)$-minimal if

- for every set of $\leq n$ variables from \mathcal{V}, some ϕ_{i} contains all these variables in its scope, and
- for every set V of $\leq m$ variables from \mathcal{V} and for all ϕ_{i}, ϕ_{j} containing all variables from V in their scopes, the projections to V agree.
\sim possible to compute an (m, n)-minimal "instance" from Φ effectively, we do not lose solutions
Φ is non-trivial if every ϕ_{i} satisfiable

Local consistency, 2/4

$1 \leq m \leq n$
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$, variable set \mathcal{V}
scope S of ϕ_{i} : all variables of ϕ_{i}
projection of ϕ_{i} to $X \subseteq S: \exists x_{1} \ldots x_{\ell} \phi_{i}$, where $S \backslash X=\left\{x_{1}, \ldots, \ldots x_{\ell}\right\}$
$\Phi(m, n)$-minimal if

- for every set of $\leq n$ variables from \mathcal{V}, some ϕ_{i} contains all these variables in its scope, and
- for every set V of $\leq m$ variables from \mathcal{V} and for all ϕ_{i}, ϕ_{j} containing all variables from V in their scopes, the projections to V agree.
\sim possible to compute an (m, n)-minimal "instance" from Φ effectively, we do not lose solutions
Φ is non-trivial if every ϕ_{i} satisfiable
\mathbb{A} has (relational) width (m, n) if every non-trivial
(m, n)-minimal instance satisfiable
\sim local consistency solves $\operatorname{CSP}(\mathbb{A})$

Local consistency, 3/4

Examples:

- $(\mathbb{Q} ;=,<)$ has width $(2,3)$
- Idea: ensure that the transitive closure of $<$ is irreflexive.
- looking on triples of variables, comparing projections on pairs

Local consistency, 3/4

Examples:

- ($\mathbb{Q} ;=,<$) has width $(2,3)$
- Idea: ensure that the transitive closure of < is irreflexive.
- looking on triples of variables, comparing projections on pairs
- $(\{0,1\} ;\{x+y+z=0\},\{x+y+z=1\})$ does not have bounded width
- linear equations cannot be solved by deriving local information

Local consistency, 3/4

Examples:

- $(\mathbb{Q} ;=,<)$ has width $(2,3)$
- Idea: ensure that the transitive closure of $<$ is irreflexive.
- looking on triples of variables, comparing projections on pairs
- $(\{0,1\} ;\{x+y+z=0\},\{x+y+z=1\})$ does not have bounded width
- linear equations cannot be solved by deriving local information

Local consistency: only small, local and necessary changes, does not waste resources \Rightarrow conservative

Local consistency, 3/4

Examples:

- $(\mathbb{Q} ;=,<)$ has width $(2,3)$
- Idea: ensure that the transitive closure of $<$ is irreflexive.
- looking on triples of variables, comparing projections on pairs
- $(\{0,1\} ;\{x+y+z=0\},\{x+y+z=1\})$ does not have bounded width
- linear equations cannot be solved by deriving local information

Local consistency: only small, local and necessary changes, does not waste resources \Rightarrow conservative

Linear equations: costly, ineffective (Gaussian elimination), constantly invents something new that never works out (more effective algorithms) \Rightarrow socialist

Local consistency, 3/4

Examples:

- $(\mathbb{Q} ;=,<)$ has width $(2,3)$
- Idea: ensure that the transitive closure of $<$ is irreflexive.
- looking on triples of variables, comparing projections on pairs
- $(\{0,1\} ;\{x+y+z=0\},\{x+y+z=1\})$ does not have bounded width
- linear equations cannot be solved by deriving local information

Local consistency: only small, local and necessary changes, does not waste resources \Rightarrow conservative

Linear equations: costly, ineffective (Gaussian elimination), constantly invents something new that never works out (more effective algorithms) \Rightarrow socialist

Fun fact: Finite-domain CSP solved by a combination of local consistency and linear equations (Bulatov, Zhuk, 2017)

Local consistency, 3/4

Examples:

- $(\mathbb{Q} ;=,<)$ has width $(2,3)$
- Idea: ensure that the transitive closure of $<$ is irreflexive.
- looking on triples of variables, comparing projections on pairs
- $(\{0,1\} ;\{x+y+z=0\},\{x+y+z=1\})$ does not have bounded width
- linear equations cannot be solved by deriving local information

Local consistency: only small, local and necessary changes, does not waste resources \Rightarrow conservative

Linear equations: costly, ineffective (Gaussian elimination), constantly invents something new that never works out (more effective algorithms) \Rightarrow socialist

Fun fact: Finite-domain CSP solved by a combination of local consistency and linear equations (Bulatov, Zhuk, 2017) \Rightarrow Grand coalition ("building bridges")

Local consistency, 4/4

\mathbb{A} finite $\Rightarrow \mathbb{A}$ has width $(m, n) \Leftrightarrow$ it has width $(2,3)$ Collapse (Barto, 2016) bounded width has an algebraic characterization

Local consistency, 4/4

\mathbb{A} finite $\Rightarrow \mathbb{A}$ has width $(m, n) \Leftrightarrow$ it has width $(2,3)$ Collapse (Barto, 2016) bounded width has an algebraic characterization \mathbb{A} infinite \Rightarrow no uniform bound, no algebraic characterization
\mathbb{A} finite $\Rightarrow \mathbb{A}$ has width $(m, n) \Leftrightarrow$ it has width $(2,3)$
Collapse (Barto, 2016) bounded width has an algebraic characterization
\mathbb{A} infinite \Rightarrow no uniform bound, no algebraic characterization
Question: \mathbb{A} fo-definable in a finitely bounded homogeneous \mathbb{B}, \mathbb{A} has bounded width.
Does there exist a bound on the width of \mathbb{A} depending only on \mathbb{B} ?

Bounds on width, 1/2

\mathbb{A} fo-definable in \mathbb{B}
$k-\operatorname{maxarity}(\mathbb{B}), \ell-$ size of the biggest bound
Does there exist a bound on the width of \mathbb{A} depending only on \mathbb{B} ?
Assume: \mathbb{A} has a relation for every orbit of k-tuples under $\operatorname{Aut}(\mathbb{B})$.
What is the minimal possible width of \mathbb{A} ?

Bounds on width, 1/2

\mathbb{A} fo-definable in \mathbb{B}
$k-\operatorname{maxarity}(\mathbb{B}), \ell-$ size of the biggest bound
Does there exist a bound on the width of \mathbb{A} depending only on \mathbb{B} ?
Assume: \mathbb{A} has a relation for every orbit of k-tuples under $\operatorname{Aut}(\mathbb{B})$.
What is the minimal possible width of \mathbb{A} ?

- Need (k, something) to check that no tuple lies in two orbits.

Bounds on width, 1/2

\mathbb{A} fo-definable in \mathbb{B}
$k-\operatorname{maxarity}(\mathbb{B}), \ell-$ size of the biggest bound
Does there exist a bound on the width of \mathbb{A} depending only on \mathbb{B} ?
Assume: \mathbb{A} has a relation for every orbit of k-tuples under $\operatorname{Aut}(\mathbb{B})$.
What is the minimal possible width of \mathbb{A} ?

- Need (k, something) to check that no tuple lies in two orbits.
- Need (something, ℓ) to get all constraints given by bounds.

Bounds on width, 1/2

\mathbb{A} fo-definable in \mathbb{B}
k - maxarity $(\mathbb{B}), \ell$ - size of the biggest bound
Does there exist a bound on the width of \mathbb{A} depending only on \mathbb{B} ?
Assume: \mathbb{A} has a relation for every orbit of k-tuples under $\operatorname{Aut}(\mathbb{B})$.
What is the minimal possible width of \mathbb{A} ?

- Need (k, something) to check that no tuple lies in two orbits.
- Need (something, ℓ) to get all constraints given by bounds.
- If $=$ among relations of $\mathbb{A} \Rightarrow$ need $(k, k+1)$ to exclude

$$
\left(x_{1}, \ldots, x_{k}\right) \in O,\left(x_{1}, \ldots, x_{k-1}, y\right) \in P, x_{k}=y
$$

for $O \neq P$
$\sim \mathbb{A}$ has relational width at least $(k, \max (k+1, \ell))$.
\mathbb{A} fo-definable in \mathbb{B}
$k-\operatorname{maxarity}(\mathbb{B}), \ell$ - size of the biggest bound
Does there exist a bound on the width of \mathbb{A} depending only on \mathbb{B} ?
Know: natural lower bound: $(k, \max (k+1, \ell))$

Bounds on width, 2/2

\mathbb{A} fo-definable in \mathbb{B}
$k-\operatorname{maxarity}(\mathbb{B}), \ell-$ size of the biggest bound
Does there exist a bound on the width of \mathbb{A} depending only on \mathbb{B} ?
Know: natural lower bound: $(k, \max (k+1, \ell))$
\mathbb{A} finite with n elements $\Rightarrow \mathbb{A}$ fo-definable from
$\mathbb{B}:=(\{1, \ldots, n\},\{1\}, \ldots,\{n\})$
Collapse $\sim \mathbb{A}$ has relational width $(2,3)$.

Bounds on width, 2/2

\mathbb{A} fo-definable in \mathbb{B}
k - maxarity $(\mathbb{B}), \ell-$ size of the biggest bound
Does there exist a bound on the width of \mathbb{A} depending only on \mathbb{B} ?
Know: natural lower bound: $(k, \max (k+1, \ell))$
\mathbb{A} finite with n elements $\Rightarrow \mathbb{A}$ fo-definable from
$\mathbb{B}:=(\{1, \ldots, n\},\{1\}, \ldots,\{n\})$
Collapse $\sim \mathbb{A}$ has relational width $(2,3)$.
Idea: $k=1, \ell=2$ (forbid $a \in\{i\} \cap\{j\}, a, b \in\{i\}$)
\Rightarrow Natural guess for upped bound on the width of $\mathbb{A}:(2 k, \max (3 k, \ell))$
Is this true also for infinite \mathbb{A} ???

Bounds on width, 2/2

\mathbb{A} fo-definable in \mathbb{B}
k - maxarity $(\mathbb{B}), \ell-$ size of the biggest bound
Does there exist a bound on the width of \mathbb{A} depending only on \mathbb{B} ?
Know: natural lower bound: $(k, \max (k+1, \ell))$
\mathbb{A} finite with n elements $\Rightarrow \mathbb{A}$ fo-definable from
$\mathbb{B}:=(\{1, \ldots, n\},\{1\}, \ldots,\{n\})$
Collapse $\sim \mathbb{A}$ has relational width $(2,3)$.
Idea: $k=1, \ell=2$ (forbid $a \in\{i\} \cap\{j\}, a, b \in\{i\}$)
\Rightarrow Natural guess for upped bound on the width of $\mathbb{A}:(2 k, \max (3 k, \ell))$
Is this true also for infinite \mathbb{A} ???
Often YES.
No counterexample known!
$m \geq 1$
\mathbb{A} has strict width m if there exists $n \geq m$
s. t. for every (m, n)-minimal instance, any local solution can be extended to a global one.
$m \geq 1$
\mathbb{A} has strict width m if there exists $n \geq m$
s. t. for every (m, n)-minimal instance, any local solution can be extended to a global one.
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$ over variables \mathcal{V}
Want: for any $U \subseteq \mathcal{V}$, any assignment $f: U \rightarrow A$ satisfying projection of every ϕ_{i} to U can be extended to a satisfying assignment for Φ.
$m \geq 1$
\mathbb{A} has strict width m if there exists $n \geq m$
s. t. for every (m, n)-minimal instance, any local solution can be extended to a global one.
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$ over variables \mathcal{V}
Want: for any $U \subseteq \mathcal{V}$, any assignment $f: U \rightarrow A$ satisfying projection of every ϕ_{i} to U can be extended to a satisfying assignment for Φ.
\Rightarrow far-right (extreme local consistency, controls too much, kills everybody who doesn't contribute to the intended global solution)
$m \geq 1$
\mathbb{A} has strict width m if there exists $n \geq m$
s. t. for every (m, n)-minimal instance, any local solution can be extended to a global one.
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$ over variables \mathcal{V}
Want: for any $U \subseteq \mathcal{V}$, any assignment $f: U \rightarrow A$ satisfying projection of every ϕ_{i} to U can be extended to a satisfying assignment for Φ.
\Rightarrow far-right (extreme local consistency, controls too much, kills everybody who doesn't contribute to the intended global solution)

Example: the universal triangle-free graph has strict width 2
(need (2,3)-minimality)
$m \geq 1$
\mathbb{A} has strict width m if there exists $n \geq m$
s. t. for every (m, n)-minimal instance, any local solution can be extended to a global one.
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}-$ instance of $\operatorname{CSP}(\mathbb{A})$ over variables \mathcal{V}
Want: for any $U \subseteq \mathcal{V}$, any assignment $f: U \rightarrow A$ satisfying projection of every ϕ_{i} to U can be extended to a satisfying assignment for Φ.
\Rightarrow far-right (extreme local consistency, controls too much, kills everybody who doesn't contribute to the intended global solution)
Example: the universal triangle-free graph has strict width 2
(need (2,3)-minimality)
Algebraic characterization: finite or infinite (ω-cat.) \mathbb{A} has strict width $k \Leftrightarrow$ for every finite $F \subseteq A$,
$\exists \mathrm{a}(k+1)$-ary polymorphism of \mathbb{A} which is a near-unanimity on F :
$x \approx f(x, \ldots, x) \approx f(y, x, \ldots, x) \approx \ldots \approx f(x, \ldots, x, y)$
$m \geq 1$
\mathbb{A} has strict width m if there exists $n \geq m$
s. t. for every (m, n)-minimal instance, any local solution can be extended to a global one.
$\Phi=\phi_{1} \wedge \cdots \wedge \phi_{k}$ - instance of $\operatorname{CSP}(\mathbb{A})$ over variables \mathcal{V}
Want: for any $U \subseteq \mathcal{V}$, any assignment $f: U \rightarrow A$ satisfying projection of every ϕ_{i} to U can be extended to a satisfying assignment for Φ.
\Rightarrow far-right (extreme local consistency, controls too much, kills everybody who doesn't contribute to the intended global solution)
Example: the universal triangle-free graph has strict width 2
(need (2,3)-minimality)
Algebraic characterization: finite or infinite (ω-cat.) \mathbb{A}
has strict width $k \Leftrightarrow$ for every finite $F \subseteq A$,
$\exists \mathrm{a}(k+1)$-ary polymorphism of \mathbb{A} which is a near-unanimity on F :
$x \approx f(x, \ldots, x) \approx f(y, x, \ldots, x) \approx \cdots \approx f(x, \ldots, x, y)$
No collapse even for finite \mathbb{A} !
$k \geq 3$,
$\mathbb{B}-k$-neoliberal, has finite duality,
ℓ - size of the biggest bound for \mathbb{B}
\mathbb{A} - fo-definable in \mathbb{B}, has all relations of \mathbb{B}
Theorem. [N., Pinsker]
If \mathbb{A} has bounded strict width
$\Rightarrow \mathbb{A}$ has relational width $(k, \max (k+1, \ell))$.

A contribution to the progress of the human race

$k \geq 3$,
$\mathbb{B}-k$-neoliberal, has finite duality,
ℓ - size of the biggest bound for \mathbb{B}
\mathbb{A} - fo-definable in \mathbb{B}, has all relations of \mathbb{B}

Theorem. [N., Pinsker]

If \mathbb{A} has bounded strict width
$\Rightarrow \mathbb{A}$ has relational width $(k, \max (k+1, \ell))$.
$\Rightarrow \mathbb{A}$ has as low relational width as possible
Idea: using the algebraic characterization of strict width, show that certain "implications" $R\left(x_{1}, \ldots, x_{m}\right) \Rightarrow S\left(y_{1}, \ldots, y_{n}\right)$ not preserved by near-unanimity
$k \geq 3$,
$\mathbb{B}-k$-neoliberal, has finite duality,
ℓ - size of the biggest bound for \mathbb{B}
\mathbb{A} - fo-definable in \mathbb{B}, has all relations of \mathbb{B}

Theorem. [N., Pinsker]

If \mathbb{A} has bounded strict width
$\Rightarrow \mathbb{A}$ has relational width $(k, \max (k+1, \ell))$.
$\Rightarrow \mathbb{A}$ has as low relational width as possible
Idea: using the algebraic characterization of strict width, show that certain "implications" $R\left(x_{1}, \ldots, x_{m}\right) \Rightarrow S\left(y_{1}, \ldots, y_{n}\right)$ not preserved by near-unanimity
"Neoliberalism implies that if a problem can be solved by installing a fascist regime (strict width), it can be solved in a much easier way and with less resources using conservative policies (relational width)."

